GI1001 Introduction to Artificial Intelligence 55103

Instructor: Dr. Paul Hsieh-Fu Tsai

Office: Engineering building 4F BME dept office

Office hours: Monday 10:00-12:00am

Email: [email protected]

Lecture: Tue 13:10-15:00 every even week

若身體不適(確診、隔離、病假、生理假),請提前與老師連絡,可以teams遠端聽課或提供錄影。謝謝

Teams遠端備用連結:

https://teams.microsoft.com/l/meetup-join/19%3AMWtKtTjdoDebkHByCes-dYzDHG8dWY9pm_bBf1g7tsE1%40thread.tacv2/1663662588779?context={"Tid"%3A"da5635aa-1e4b-44fc-9214-596b4265e453"%2C"Oid"%3A"ed062cf9-a7c4-456e-b03f-7db964b0d2fa"}

整體教學目標

介紹人工智慧之基礎概念,並從生醫工程視角切入提供跨領域應用範例與現有新知,為本校醫工系等新生提供未來專業領域導入人工智慧之基本知識和想法。

教學方法

講授課程,以投影片為主,板書與課堂討論輔助

📜 Course Description

隨著工業自動化與大數據時代的到來,人工智慧亦迎來第三波的快速發展,在工業4.0和跨領域應用上看到巨大的應用潛力,了解人工智慧成為未來學習和工作技能中必要的一部,故提早對於人工智慧的基礎知識與未來發展在醫工系學生專業領域的知識累積具有重要性。本課程將從基礎理論、技術介紹人工智慧大方向的發展,並從生醫工程應用的視角介紹未來潛在的應用,期許刺激學生創意與思考未來專業領域知識和人工智慧的結合。

Following the industrial automation and big data fashion, artificial intelligence (AI) also marched into the third boom, massive potential in industry 4.0 applications and across multiple disciplines can be foreseen. Understanding AI is therefore necessary as part of knowledge as well as professional development to students majoring in biomedical engineering (BME). In this course, we introduce basic theory, technology, and future outlook of AI and discuss the applications from the perspective of BME, aiming to stimulate the creativity and critical thinking in students for integration of professional knowledge and AI.

🗝 Enrollment

Prerequisite(s): None Recommended Preparation: Some basics about computer science.

📚 Readings

Recommended Texts

Flexible learning

人工智慧在臺灣:產業轉型的契機與挑戰

https://www.youtube.com/watch?v=OddYM6aq-zM

自駕車技術 中文 youtube科普介紹

https://www.youtube.com/c/財知道x理財x科技tech_finance_and_life/playlists?app=desktop

Facebook AI leader 圖靈獎得主Yann Lecun演講

https://www.youtube.com/watch?v=VRzvpV9DZ8Y